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Abstract— We study the problem of visual surface inspection
of a bridge for defects using an Unmanned Aerial Vehicle
(UAV). We do not assume that the geometric model of the
bridge is known beforehand. Our planner, termed GATSBI,
plans a path in a receding horizon fashion to inspect all
points on the surface of the bridge. The input to GATSBI
consists of a 3D occupancy map created online with LiDAR
scans. Occupied voxels corresponding to the bridge in this map
are semantically segmented and used to create a bridge-only
occupancy map. Inspecting a bridge voxel requires the UAV
to take images from a desired viewing angle and distance.
We then create a Generalized Traveling Salesperson Problem
(GTSP) instance to cluster candidate viewpoints for inspecting
the bridge voxels and use an off-the-shelf GTSP solver to find
the optimal path for the given instance. As the algorithm sees
more parts of the environment over time, it replans the path to
inspect novel parts of the bridge while avoiding obstacles. We
evaluate the performance of our algorithm through high-fidelity
simulations conducted in AirSim and real-world experiments.
We compare the performance of GATSBI with a classical
exploration algorithm. Our evaluation reveals that targeting the
inspection to only the segmented bridge voxels and planning
carefully using a GTSP solver leads to a more efficient and
thorough inspection than the baseline algorithm.

I. INTRODUCTION

In this work, we are interested in designing a high-level
planner that inspects a 3D surface, i.e., a bridge for identify-
ing visual defects. Inspection is closely related to coverage
and exploration, which are problems that have been well-
studied in the literature. However, as we will show, coverage
and exploration are not necessarily the best approaches for
inspection. Given a 3D model of the environment (including
the bridge), we can find a coverage path that covers all
points on the bridge using an offline planner [1]. In practice,
we often do not have any prior model of the layout of the
bridges. Even if a prior 3D model is available, it may be
inaccurate due to changes in the environment surrounding
the bridge as well as structural changes made to the bridge.
In this work, we address the problem of designing targeted
inspection plans as the 3D model of the environment is built
online.

Recently, a number of commercial solutions such as the
ones from Skydio [2] and Exyn [3] and ongoing work in
academia provide robust autonomy including SLAM and
low-level planning (how to navigate from point A to point
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Fig. 1: An example of V iew. The green box depicts the face
of a bridge voxel, the blue cone depicts the viewing cone,
and the red band on the cone depicts the viewing distance.

B). Our work on high-level planning (determining what
the next waypoint B should be) is complementary to these
works. Current forms of planning mostly consist of someone
clicking on waypoints for the UAVs to fly to. As a result,
we develop tools that autonomously solve the more general
problem of inspecting a bridge with no prior information
about its geometry.

Frontier-based strategies [4] are typically used for ex-
ploring an initially unknown environment. A frontier is a
boundary between explored and unexplored regions. The
strategy chooses which of the frontiers to visit (and which
path to follow to get to the chosen frontier) to help speed
up exploration. The algorithm terminates when there are no
more accessible unexplored regions. A bounding box placed
around the bridge can restrict exploration when operating in
an open environment. Exploring the bridge does not neces-
sarily mean that the UAV will get inspection-quality images.
Instead, an inspection planner that can take into account
viewing and distance constraints may be more efficient. We
present such a planner, termed GTSP-Based Algorithm for
Targeted Surface Bridge Inspection (GATSBI), and show that
it outperforms the frontier-based exploration strategies in
efficiently inspecting the bridge (Section V).

GATSBI consists of four modules: 3D occupancy grid
mapping using LiDAR data, a semantic segmentation algo-
rithm to find LiDAR points that correspond to the surface
of the bridge, a Generalized Traveling Salesperson Problem
(GTSP) solver for finding inspection paths for the UAV,
and a navigation algorithm for executing the planned path.
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We use off-the-shelf modules for occupancy grid mapping
(OctoMap [5]), solving GTSP (GLNS [6]), and point-to-point
navigation (MoveIt [7]). Our key algorithmic contribution
is to show how to reduce the inspection problem to a
GTSP instance and the full pipeline that outperforms baseline
strategies. Our technique takes into account overlapping
viewpoints that can view the same parts of the bridge and
simultaneously selects where to take images and what order
to visit those viewpoints. We also show when and how to
replan as we obtain more information about the environment.

II. RELATED WORK

As described earlier, frontier-based exploration is a
widely-used method for 3D exploration of unknown environ-
ments [8]–[10]. Other works proposed variants of frontier ex-
ploration focused on choosing the next frontier to visit [11],
[12]. Another popular approach is to model the exploration
problem as one of information gathering and choose a path
(or a frontier) that maximizes the information gain [13], [14].
Additionally, there are Next-Best-View approaches [15] that,
as the name suggests, plan the next-best location to take an
image from to explore the environment. We refer the reader
to a recent, comprehensive survey on multi-robot exploration
by Li [16] that covers a variety of exploration strategies.

As shown in our simulations, generic exploration strategies
are inefficient when performing targeted inspection (e.g.,
bridge inspection). There has been work on designing in-
spection algorithms that plan paths that take into account
the viewpoint considerations [17]–[20]. When prior infor-
mation is available, one can plan inspection paths carefully
by considering the geometric model of the environment.
Typically, algorithms use prior information, such as a low-
resolution version of the environment, to create an inspection
path and obtain high-resolution measurements of the environ-
ment [17], [19]. Unlike these works, we consider a scenario
where the robot has no prior environmental information and
must plan using incrementally revealed data.

Bircher et al. [21] presented a receding horizon planner for
exploration and inspection. Both algorithms use a Rapidly-
Exploring Random Tree to generate a set of candidate paths
in the known, free space of the environment. Then the
algorithm selects a path based on a criterion that values
how much information a path gains about the environment.
The planner uses a receding horizon algorithm repeatedly
invoked with new information. We follow a similar approach;
however, their algorithm knows the inspection surface a
priori, while our work only requires the UAV to see a portion
of the bridge at the start of inspection. The environment is
not known for their exploration algorithm but it is known
for their inspection algorithm. GATSBI has no prior knowl-
edge about the environment and minimal knowledge of the
target inspection surface. Furthermore, we cluster potential
viewpoints using GTSP which leads to further efficiency.

Song et al. [20] recently proposed an online algorithm
that consists of a high-level coverage planner and a low-
level inspection planner. The low-level planner takes into
account the viewpoint constraints and chooses a local path

that gains additional information about the structure under in-
spection. Our work differentiates by guaranteeing the quality
of inspection, not requiring a bounding box around the target
infrastructure, and segmenting the infrastructure of interest
from the environment which guarantees inspection of only
the target infrastructure.

In summary, we make the following contributions:
• Present a receding horizon algorithm, GATSBI, that

plans paths to efficiently inspect bridges when no prior
information about them is present;

• Demonstrate that GATSBI outperforms a baseline
frontier-based exploration 15x at bridge surface in-
spection and 17x at crack detection through numerous
simulations in AirSim using 3D models of bridges;

• Validate the practical feasibility with experiments on a
mock bridge and a simplified version of GATSBI;

• Provide ROS packages that integrate MoveIt with Air-
Sim for simulations and DJI’s SDK for real-world
experiments.1

III. PROBLEM FORMULATION

We describe the overarching problem below.
Problem 1: Given a UAV with a 3D LiDAR and RGB

camera, find a path to inspect every point on the bridge
surface to minimize the total flight distance.

We consider the scenario where the geometric model of
the bridge is unknown a priori. We assume that the UAV
starts the algorithm at a location where at least some part
of the bridge is visible. If this is not the case, we can run
a frontier exploration strategy until the bridge is visible. We
then plan an inspection path for the part of the bridge that is
visible. As the UAV sees more of the bridge, we replan to
find a better tour in a receding horizon fashion. Problem 2
(defined shortly) focuses on finding a path for the UAV based
on the partial information. We solve the larger Problem 1 by
repeatedly solving Problem 2 as we gain new information.

We use a 3D semantic, occupancy grid built using lo-
calized pointcloud data from the 3D LiDAR to represent
the model of the bridge built online. GATSBI assigns each
voxel in the occupancy grid a semantic label. The label
indicates whether the voxel is free space vF ∈ VF ; is
occupied space, part of the bridge, and previously inspected
vBI ∈ VBI ; is occupied, part of the bridge, but not yet
inspected vBN ∈ VBN ; and occupied but not a bridge voxel
(i.e., obstacles) vO ∈ VO. Our goal is to inspect all the
voxels that correspond to the bridge surface, i.e., to ensure
that VBN = ∅.

A voxel vBN ∈ VBN is inspected if we inspect at least
one of its six faces. A face is inspected if the center of that
face falls within a cone given apex angle centered at the
UAV camera and within a minimum and maximum range
of the UAV camera. The apex angle represents the field of
view of the camera that is rigidly attached to the UAV. The
viewing distance is a minimum and maximum distance range
that the UAV should inspect a bridge voxel to ensure quality

1https://github.com/raaslab/GATSBI

https://github.com/raaslab/GATSBI


Fig. 2: Example of V iew where bridge voxels can be
inspected.

Fig. 3: Flow diagram of GATSBI. The algorithm creates an
occupancy map of the environment using incoming LiDAR
scans. Then, it segments the points corresponding to the
bridge into another point cloud using the RGB camera
images. It then makes another occupancy map of only the
bridge using the segmented point cloud. GATSBI uses both
the environment and bridge occupancy maps to generate
viewpoints, points in free space where the UAV can inspect
the bridge. It sends these to the GTSP instance to make a
tour and then a local path planner to get the flight path.

images for inspection. Figure 2 shows an example of these
viewing constraints. For the rest of the paper, we refer to
the viewing cone and distance as V iew. The RGB camera is
used to take pictures of the bridge once the UAV has reached
a target V iew point.

Problem 2: Given a 3D occupancy map consisting of
four sets of voxels (VF , VBI , VBN , VO), find a minimum
length path that inspects every voxel in VBN .

In the following section, we show how to model this
problem as a GTSP instance.

IV. THE GATSBI PLANNER

In this section, we give an overview of the GATSBI
algorithm. We show the full pipeline (Fig. 3) which broadly
consists of two modules: perception and planning. We de-
scribe each in detail next.

A. Perception

GATSBI starts by segmenting the bridge from the envi-
ronment. Segmenting out the bridge allows the algorithm
to differentiate between the bridge and obstacles in the
environment. This allows only the bridge to be inspected as
opposed to every object in the environment. The 3D LiDAR
points that lie on the segmented bridge are classified as
bridge points. These bridge points are then used to create
a 3D occupancy grid. In parallel, the complete point cloud

Fig. 4: Full voxel map containing VBI ∪ VBN ∪ VO.

(segmented and non-segmented points), is used to generate
an environmental 3D occupancy grid. Together, these two
occupancy grids output a set of voxels: free VF , bridge
VBI , bridge VBN , and obstacle VO. The algorithm uses the
segmented voxels (VBI , VBN ) to plan inspection paths. The
algorithm uses the other voxels (VO, VF ) to plan collision-
free paths and take into account viewing constraints. Oc-
toMap [5] is used to generate our 3D occupancy grids. An
example of the 3D occupancy grid is shown in Fig. 4.

B. Planner

To inspect a bridge, we need to inspect all voxels in VBN

(as described in Section III). GATSBI works in a receding
horizon fashion. The VBI set keeps track of inspected voxels.
This avoids unnecessarily inspecting the same voxel more
than once. Specifically, the UAV must view each voxel in
VBN from some point on its path within V iew. We formulate
this problem as a Generalized Traveling Salesperson Problem
(GTSP) instance. GTSP generalizes the Traveling Salesper-
son Problem and is NP-Hard [6]. The input to GTSP consists
of a weighted graph, G, where vertices are clustered into
sets. The edges of the graph are the distances between the
vertices. The objective is a minimum weight tour that visits
at least one vertex in each set once. Our GTSP configuration
is explained next.

For our implementation, vertices are the center-points of
voxels vF that the UAV can fly to and clusters are the set of
all vF a specific vBN can be inspected at. Each vertex in G
corresponds to a candidate viewpoint. We check all pairs of
vF ∈ VF and vBN ∈ VBN to see if vF lies within V iew of
one of the faces of vBN . If so, we add a vertex in the graph
G corresponding to the pair vF and vBN .

Each free voxel that can inspect the same vBN will add
one vertex each to the cluster corresponding to vBN . A
simplified example of this graph setup is shown in Fig. 5. The
GTSP tour will ensure the UAV visits at least one viewpoint
in this cluster.

Next, we create an edge between every pair of vertices in
G. The cost for each of these edges is initially the Euclidean
distance between the two vertices. With the vertices, edges,



Fig. 5: Example GTSP setup. Each inspectable bridge voxel
can have multiple potential inspection viewpoints (vertices).
All the vertices for a single bridge voxel are clustered
together. The edges between these vertices are initially their
Euclidean distance.

and clusters, we create a GTSP instance and use the GTSP
solver, GLNS [6], to find a path for the UAV. We use GTSP
as our planner because it will guarantee at least one point
corresponding to every VBN will be visited.

Before moving from one point to the next, we check the
distance from the current location of the UAV to the next
vertex in the GTSP path. Instead of Euclidean distance, we
find the distance of the path between these points using
a Rapidly-exploring random tree (RRT) connect algorithm
with our environment occupancy grid. This ensures the path
between these points is collision-free. We use RRT Connect
to quickly find a path within a threshold as opposed to using
another RRT variant such as RRT* to find the optimal path.
If the difference between the RRT distance and the Euclidean
distance is greater than DD (discrepancy distance), we
update the edge costs in the GTSP instance and replan the
GTSP path. We replan as needed to ensure that the first edge
in the returned tour is within DD of the Euclidean distance.
We call this a lazy evaluation of edge costs. Computing the
RRT distance (which is a more accurate approximation of the
actual travel distances) between every pair of vertices would
be time-consuming. By checking the discrepancy lazily, we
find a tour quickly while also not executing any edge where
the actual distance is significantly larger than the expected
distance. For our experiments, we set DD to be 125% of
the Euclidean distance to account for some of the variances
in paths generated using RRT algorithms but still allow
replanning when necessary.

We keep track of each newly visited cluster during the
flight. Each of these newly visited clusters corresponds to a
non-inspected bridge voxel. The camera is also used to take
an image at each visited point in the path to obtain inspection
images. Once inspected, GATSBI moves them from set VBN

to VBI . We execute the plan until one of two conditions is
met: either a time limit (RPT ) elapses, or we complete the
path, whichever occurs first. We also record the raw sensor
data during the flight. Once we complete navigation, we

Algorithm 1 Overview of single iteration of GATSBI algo-
rithm

1: Update occupancy grids with latest localized pointcloud
as described in Section IV-A

2: Find all inspectable bridge voxels using occupancy grids
and remove previously inspected bridge voxels, resulting
in VBN

3: if VBN = 0 then
4: Terminate
5: end if
6: Create GTSP instance G as described in Section IV-B
7: while Difference in the RRT distance of the first edge in

the GTSP solution and its Euclidean distance is greater
than a threshold do

8: Update first edge cost in G with RRT distance and
re-solve GTSP

9: end while
10: Use RRT as point-to-point planner for GTSP tour
11: Update VBI with latest inspected bridge voxels

use the stored data to update the bridge inspected and non-
inspected voxels and replan. Once VBN is empty, GATSBI
considers the bridge inspected and terminates. An overview
of a single iteration of the GATSBI algorithm can be viewed
in Algorithm 1.

V. EVALUATION

In this section, we evaluate the algorithm in both sim-
ulation and hardware experiments. For the simulations, we
compare it against a baseline algorithm as well as discuss
parameter tuning.

A. Simulations

We present simulation results to evaluate the performance
of GATSBI. We first present a qualitative example of the
inspection paths produced by GATSBI. We also evaluate the
computational time for three subroutines within GATSBI.
Finally, we compare GATSBI with the baseline frontier-
based exploration.

1) Setup: We use Robot Operating System (ROS)
Melodic on Ubuntu 18.04 and AirSim to carry out the
simulations. We equipped the simulated UAV with a LiDAR
with specifications set to match a Velodyne VLP-16 3D
LiDAR and an RGB camera. The 3D LiDAR generates
around 300,000 points/sec. It also has a 360◦ horizontal field
of view with ±15◦ vertical field of view. The VLP-16 has
a range of 100m [22]. Due to the LiDAR’s orientation, the
LiDAR had a 30◦ horizontal FoV and measured distances
ahead, behind, and below the UAV (with respect to the UAV’s
coordinate frame). We use the MoveIt [7] software package
based on the work done by Köse [23] to implement the
RRT connect algorithm. MoveIt uses RRT connect and the
environmental 3D occupancy grid to find collision-free paths
for point-to-point navigation.

For all experiments, we use a viewing cone with an apex
angle of 0◦ and a viewing distance between two to ten



(a) Arch Bridge (b) Box Girder Bridge

(c) Covered Bridge (d) Iron Bridge

(e) Steel Bridge

Fig. 6: The 5 simulation environment bridges.

meters. We set the viewing cone to the strictest possibility
— a straight line from the camera. This is to ensure the
highest quality of images captured for inspection. We set the
viewing distance based on Dorafshan et al. [24], where they
suggest a minimum flight distance of two meters to allow
for the safe flight of the UAV.

2) Qualitative Example: We evaluate GATSBI on five
bridges shown in Fig. 6. The five bridges used are the
arch bridge, box girder bridge, covered bridge, iron bridge,
and steel bridge. All bridges, except the steel bridge, do
not contain any other object in the environment except
for the ground. The steel bridge, on the other hand, has
other obstacles such as the landscape. They were all chosen
because they distinctly represent different types of bridges.
Figure 7 shows the path followed by the UAV as given
by GATSBI around the Arch Bridge environment. We used
AirSim’s built-in segmentation algorithm to segment the
bridge out from the rest of the environment. AirSim labels
each LiDAR point with the segmentation color it belongs
to. We modified the AirSim ROS wrapper to publish a
segmented pointcloud containing points only belonging to
the bridge using their built-in segmentation. The choice of the
segmentation algorithm does not affect the main contribution
of this paper which is the GATSBI planner. We also created
a MoveIt implementation that integrates with AirSim. This
package is available in our repository. Next, we present
quantitative results on GATSBI.

3) Computational Time: We examine the time it takes
for executing GATSBI. In Fig. 8, we report the average
time for different components of the algorithm during all
the simulations. We report three times: the time spent in
the planner to create the GTSP instance (GATSBI), the time
taken to solve the GTSP instance (GTSP), and the flight time
before the algorithm calls the planner again (flight). We see
that the time it takes GATSBI to perform segmentation and
create a GTSP instance takes an average of 0.14 minutes. The
GTSP solver takes an average of 8.82 minutes. Compared to

Fig. 7: UAV flight path during GATSBI.

Fig. 8: We analyze how long different parts of the algorithm
took to run. For all flights, the average flight time was 64.53
minutes. The average GTSP solver (GLNS) time was 8.82
minutes. Lastly, the average time for the remaining parts of
GATSBI was 0.14 minutes.

the flight time (average of 64.5 minutes), the time taken by
the planner is not significant. This suggests that GATSBI is
not a bottleneck and is capable of running in real-time on
UAVs that are executing 3D bridge inspection in unknown
environments.

4) Comparison with Baseline: We compare the perfor-
mance of GATSBI with a baseline algorithm that we devel-
oped that is based on frontier exploration. Since the baseline
method does not directly count the number of inspected
voxels, we implement a package on top of the baseline
to count the inspected voxels. This way we compare only
the inspected voxels, not the covered voxels. We can see
in Fig. 9 and Table I that our method does better than
the baseline method when comparing the percentage of
bridge voxels inspected. We obtain this value by dividing
the inspected bridge voxels (|VBI |) upon the termination of
the algorithm by the total inspectable bridge voxels. Note,
obstructed bridge voxels that have no candidate viewpoints
are uninspectable.

Nevertheless, we observe that GATSBI achieves inspection
of 100% voxels while the baseline only achieves a maximum
of 10%. Frontier exploration does not explicitly take inspec-
tion into account. As shown in the right plot in Fig. 9, it
performs as well as GATSBI at exploration. The environment
is also simple; in a more complicated environment, it would
be better at exploration than the GATSBI algorithm. This



Fig. 9: Top: The solid blue line is the percentage of in-
spectable voxels inspected by GATSBI over time. The dashed
orange line represents the same for Frontier Exploration.
Bottom: The solid blue line represents the percentage of
environment voxels discovered over time. The dashed orange
represents the same for Frontier Exploration. While Frontier
Exploration is faster at finding the environment voxels as
seen on the bottom, it is not good at inspecting the bridge
voxels and only inspects a small percentage of them.

Bridge Algorithm Bridge Vox. Inspected Runtime

Arch Frontier 124 10 15.2 min
GATSBI 124 44.8 min

Box Girder Frontier 140 11 13.2 min
GATSBI 140 53.7 min

Covered Frontier 60 5 8.7 min
GATSBI 60 69.3 min

Iron Frontier 167 6 8.4 min
GATSBI 167 66.9 min

Steel Frontier 214 12 24.5 min
GATSBI 214 77.3 min

TABLE I: Table showing the number of inspectable voxels
that were inspected by GATSBI and Frontier for all 5 bridges
as well as the total algorithm runtime.

validates our claim that GATSBI targets the inspection of
bridge surfaces instead of just covering the environment.
We also see that GATSBI executes a more thorough in-
spection than the baseline. Therefore, we justify the claim
that GATSBI is more efficient in inspection compared to a
frontier exploration algorithm.

5) Parameter Tuning: One parameter used in the algo-
rithm is replanning time, RPT . This time determines when
to stop on the current GTSP tour if it has not been com-

pleted and replan with GATSBI using the most up-to-date
environment and bridge information. Here, we discuss how
we determined what to set RPT to. Initially, we evaluated
different values of RPT for one of the bridge simulations.
The results of this are shown in Fig. 10a. RPT values of
15 and 60 seconds were then chosen for further evaluation
due to them having the shortest flight distance. 5 runs each
at these RPT values were conducted using the simulation
setup. Figure 10b shows the average flight distance during
these 5 runs. On average, an RPT value of 15 seconds had
a slightly shorter total flight time (177.5 vs 186.5 meters)
compared to an RPT value of 60 seconds but with a higher
standard deviation (22.4 vs 7.1). However, the average total
runtime was longer using an RPT value of 15 seconds (54.7
vs 41.2 min) while also having a higher standard deviation
(7.0 vs 3.3) compared to an RPT value of 60 seconds as
shown in Fig. 10c. Because of this, an RPT value of 60
seconds was used for the algorithm.

6) Crack Detection: We also evaluated GATSBI on a sim-
plified crack detection setup and compared its performance
to frontier exploration. We randomly placed defects on 10%
of the bridge’s surface voxels and determined how many of
them were detected by both algorithms. Detected is defined
as inspecting the voxel that the crack is on. This evaluation
was done in an offline manner and each bridge was evaluated
10,000 times for both algorithms. The results are shown
in Table II. GATSBI performed at least 11.5x better at
inspecting voxels with defects than frontier exploration. The
reason that GATSBI’s detection is not close to 100% is that
cracks were also placed on top of the bridge and below. For
our bridge models, on average 40% of the bridge surface is
inspectable using a front-facing camera. Since the UAV is not
equipped with an upwards and downwards-facing camera,
the remaining 60% cracks are not possible to be found.
However, by adding these cameras and setting up the GTSP
instance accordingly, these cracks would also be detected as
long as they are not obstructed. Cracks could also be blocked
by obstacles in the environment making them impossible to
inspect.

Bridge Algorithm % Found Std. Dev.

Arch Frontier 2.6% 2.5%
GATSBI 32.5% 7.2%

Box Girder Frontier 3.2% 2.8%
GATSBI 49.4% 8.0%

Covered Frontier 3.0% 3.9%
GATSBI 34.5% 10.9%

Iron Frontier 1.6% 1.9%
GATSBI 44.1% 7.6%

Steel Frontier 2.4% 2.1%
GATSBI 42.8% 6.7%

TABLE II: Table showing the results from the crack detection
simulations on the multiple bridges. We compare the percent-
age of cracks found using GATSBI and Frontier Exploration.

B. Real-World Experiments

This section presents real-world experiments that evaluate
the performance of GATSBI. Here, we show results with



(a) Replanning Time vs. Flight Distance and Total
Runtime

(b) 15 and 60 second Replanning Time vs. Flight
Distance

(c) 15 and 60 second Replanning Time vs. Total
Runtime

Fig. 10: Evaluation on different values for the replanning
time parameter. In the first figure, we show how different
values of replanning time affected the total flight distance
of the UAV and the total runtime of the algorithm. For the
second figure, we show the average and standard deviation of
multiple runs at a replanning time of 15 and 60 seconds vs.
the total flight distance. The last figure is the same but instead
of total flight distance it is the total algorithm runtime.

GATSBI since our simulated experiments demonstrated that
GATSBI outperformed frontier exploration (our baseline in
Section V-A.4). Below, we present quantitative results that
compare the computation time, flight time, and the number
of voxels inspected with GATBSI.

1) Setup: We performed these experiments using a DJI
Matrice M600 Pro (see Fig. 11). The M600 Pro was equipped
with an NVIDIA Jetson TX2 (which ran Ubuntu 16.04 and
ROS Kinetic), Velodyne VLP-16 3D LiDAR, and GPS. Here,
we used the same LiDAR model and parameters in the
simulated experiments.

We constructed a mock bridge (Fig. 11) and flew the UAV
around it within an outdoor UAV cage called the Fearless
Flight Facility (F3) at the University of Maryland, College
Park. Due to mapping limitations, a simplified version of
GATSBI was run. These limitations are addressed in Sec-
tion VI. For our experiments, we used the UAV’s LiDAR
to create a map of our bridge and then ran GATSBI in
an offline manner to find the inspection path. To localize
the pointcloud, we used the pose of the DJI M600 Pro
obtained using its GPS array. Unlike simulations where the
localization is perfect, there is noise in the real world.
To combat this, we can use off-the-shelf Visual Inertial
Odometry along with GPS for localization along the bridge
surface [25], [26]. For our experiments, the bridge was
segmented out using a box filter on the localized pointcloud.
For our use-case, geographical segmentation worked well but
for more complicated experiments, color-based or learning-
based segmentation networks can be used. Another imple-
mentation of MoveIt was integrated with DJI’s SDK and used
for our obstacle-avoidance navigation planning. This package
is also provided in our repository and is the first of its kind.
For larger structures, battery-life of the UAV would limit
structure coverage during the single flight. We can account
for this by returning the UAV to the home-point when it’s
battery gets low and swapping out the batteries with charged
ones. In the future, we are interested in investigating how
GATSBI scales when we use multiple agents to inspect for
bridge.

Fig. 11: Left: The mock bridge used for experiments. Right:
DJI M600 Pro mid-flight.

2) Results: We implemented a simplified version of the
GATSBI algorithm on the real-world mock bridge. Our
algorithm was able to inspect all 15 inspectable bridge
voxels. The target inspection path and actual flown path are
shown in Fig. 12. The white line is the direct path between
the target inspection points. The orange line is the actual



Fig. 12: Flight path and target inspection path on the real-
world mock bridge.

flown path. The pink cones represent the inspection points.
This experiment validates that GATSBI can be used for
real-world infrastructure inspection. The computation time
of the GATSBI algorithm was 0.32 seconds, GTSP time
was 8.25 seconds, and flight time was 772 seconds. As
shown in the simulations, the GATSBI algorithm time is not
the bottleneck. Including the GTSP solver time, the total
algorithm time is still much smaller than the flight time.

VI. CONCLUSION

We present GATSBI, a 3D bridge inspection planner. We
evaluate the performance of the algorithm through AirSim
simulations and real-world hardware experiments with a
UAV equipped with a 3D LiDAR and an RGB camera.
The simulations show that GATSBI outperforms a frontier-
based exploration algorithm. The hardware experiments show
that GATSBI is a viable solution to real-world infrastructure
inspection. In particular, we show that the algorithm is
efficient in the sense that it targets inspectable voxels rather
than simply exploring a volume. The simulations and exper-
iments also demonstrate that the algorithm can run in real-
time. In future work, we intend to improve our real-world
experiments. In particular, implementing a SLAM module
to account for noise found in the real world is needed to
conduct more complex experiments. We are also looking into
implementing a multi-agent solution to account for limited
battery-life of UAV’s.
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