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Abstract— We propose MAP-NBYV, a prediction-guided active
algorithm for 3D reconstruction with multi-agent systems.
Prediction-based approaches have shown great improvement
in active perception tasks by learning the cues about structures
in the environment from data. But these methods primarily
focus on single-agent systems. We design a next-best-view
approach that utilizes geometric measures over the predictions
and jointly optimizes the information gain and control effort
for efficient collaborative 3D reconstruction of the object. Our
method achieves 22.75% improvement over the prediction-
based single-agent approach and 15.63% improvement over
the non-predictive multi-agent approach. We make our code
publicly available through our project website: http://raaslab.
org/projectssMAPNBYV/

I. INTRODUCTION

Visual surveying and inspection with robots have been
studied for a long time for a wide range of applications
such as inspection of civil infrastructure [1], [2] and large
vehicles [3], [4], precision agriculture [5], and digital map-
ping for real estate [6], [7]. The utilization of robots in
these applications is highly advantageous as they can access
hard-to-reach areas with greater ease and safety compared
to situations with direct human involvement. Recent work
on making robots autonomous for these tasks make their
use more appealing. This work focuses on one such long-
studied problem of 3D object reconstruction [8], where the
objective is to digitally reconstruct the object of interest by
combining observations from multiple vantage points. While
it could be easier to achieve this in an indoor environment
by carefully placing sensors around the object, the same
can’t be achieved for the outdoors and open areas. For the
latter, the sensor(s), must be moved around the object to
capture information from different viewpoints. This can be
realized with sensors such as cameras and LiDARs mounted
on unmanned aerial vehicles (UAVs). A UAV with unlimited
power supply capacity could capture infinite observations for
an almost perfect reconstruction of the object, but the real-
world limitation of battery capacity adds another dimension
to the problem: achieving an accurate 3D reconstruction as
fast as possible.

The trade-off between reconstruction accuracy and task
duration in unknown environments is commonly addressed
through Next-Best-View (NBV) planning, wherein a robot
determines the optimal location for the next observation
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to maximize information gain. Numerous solutions have
been proposed by the research community to tackle this
problem, with a majority of them catering to single-agent
systems [9]. However, deploying a team of robots instead
of a single agent can enhance task efficiency multi-fold,
while also offering additional benefits such as fault tolerance
through redundancy. But the direct application of single-
agent NBV methods to multi-agent systems does not translate
well in terms of performance. This issue stems from the
potential overlap between the individual observations. An
efficient multi-agent NBV formulation requires coordination
among robots to build a joint representation and minimize
the overlap.

(a) C-17 and the drones in AirSim simulation  (b) Partial point cloud from joint observations

(c) Flight path prescribed by MAP-NBV

Fig. 1: Application of MAP-NBYV to a C-17 plane.

(d) Final point cloud after MAP-NBV termination

In this work, we extend our previous work on prediction-
driven single-agent NBV, Pred-NBV [10], to a team of
robots for 3D reconstruction to bring the advantages of
the prediction-guided approach to a multi-agent system. We
call this multi-agent prediction-based next-best-view method
MAP-NBV. Pred-NBV [10] uses a 3D point cloud prediction
network along with a geometric NBV approach while also
considering the control effort required for object reconstruc-
tion. An important feature of Pred-NBV is that it doesn’t
require the partially observed point cloud to be centered
at the full object center, an implicit assumption in many
3D reconstruction networks. Naively extending Pred-NBV
to a team of robots would result in significant overlap as all
the agents would move in the same direction to maximize
individual information gain. This is inefficient as it would
be more advantageous for the robots to move in different
directions. MAP-NBV solves this issue by defining NBV
measures over joint observation. We accomplish this by
removing duplicate points in observations from multiple
robots when calculating the information gain. Along with
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this, we account for the total control effort in our NBV
objective, which results in efficient planning for the whole
team.

We make the following contributions in this work:

1) We propose a multi-agent, prediction-based NBV plan-
ning approach for active 3D reconstruction of various
objects with a novel objective combining visual infor-
mation gain and control effort.

2) We modify a single-agent baseline NBV algorithm
based on [11] that uses frontier-based information gain,
and extend its functionality to effectively operate in
multi-agent settings.

3) We show that our method outperforms Pred-NBV [10],
a single-agent prediction-based algorithm, by 22.75%
and the multi-agent version of a traditional NBV base-
line [11] by 15.63%.

We share the qualitative results and release the project code
from our method on our project website!.

II. RELATED WORK

The use of robots for data acquisition purposes is an
extensively studied topic for various domains. Their usage
range from infrastructure inspection [12] and environment
monitoring [13], [14] for real-world application to the real-
world digitization for research datasets and simulations [6],
[71, [15]. When the environment is unknown, active methods
such as next-best-view (NBV) are used to construct an object
model on the fly by capturing additional observations. A
majority of the works on NBV planning use information-
theoretic measures [9] for selection to account for uncertainty
in observations [9], [16], [17]. The widely used frontier and
tree-based exploration approaches also utilize uncertainty
about the environment for guiding the robot motion [18]-
[21]. Some works devise geometric methods which make
inferences about the exact shape of the object of interest and
try to align the observations with the inferred model [22]—
[24]. Prediction-based NBV approaches have emerged as
another alternative in recent years, where a neural network
takes the robot and/or the environment state as the input and
NBYV pose or velocity as the output [10], [25]-[27].

A majority of the existing work on NBV is focused on
single robot systems. The task performance can be enhanced
by adding more robots to the systems, but directly extending
single-robot NBV approaches to multi-robot systems may
result in sub-optimal performance due to significant overlap
in observations. This issue led to the development of explo-
ration algorithms specifically for multi-robot systems [28]—
[30] with information-theoretic measures for determining
NBV. Some recent works on multi-robot systems have
explored the utilization of predictions for improvement in
task efficiency. Almadhoun et al. [31] designed a hybrid
planner that switches between a classical NBV approach
and a learning-based predictor for NBV selection but uses
a partial model obtained by robot observations only. Wu
et al. [32] use a point cloud prediction model for plants
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to use the predicted point cloud as an oracle leading to
better results than the traditional approaches. This method
uses entropy-based information gain measures for NBV and
is designed for plant phenotyping with robotic arms. These
methods do not consider the control effort required which is
important for UAVs with energy constraints when deployed
for observing large objects such as airplanes and ships. Also,
these works employ information theoretic NBV approaches.
We aim to explore a prediction-based approach for geometric
NBYV selection.

In this work, we extend Pred-NBV [10] which also uses
point cloud prediction and build a multi-robot NBV planner.
The prediction on the point cloud makes the pipeline mod-
ular and interpretable and can be improved by improving
individual modules. We select NBV based on information
gain, as well as control effort, making our approach more
grounded in real-world limitations.

III. PROBLEM FORMULATION

We are given a team of n robots, each equipped with a 3D
sensor. The team flies around a closed object of volume V €
R3 and observes the point on its surface S C V. The surface
points s; observed by the robot r; from the view-point
¢ € P are represented as a voxel-filtered point cloud and
the relationship between them is defined as s; = f(r;, o).
The robot r; follows a trajectory &, consisting of multiple
viewpoints, and keeps track of the points observed so far.
The distance traveled by a robot between two poses ¢; and
¢; is represented by d(¢;, ¢;). The point cloud observed by
the team of robots is the union of the surface points observed
by the individual robots over their respective trajectories,
ie., sz = U~ Uqbeﬁri f(ri,¢) and € represents the set of
trajectories for each robot, i.e., & = {&,, &, 0 &, b

The objective is to find a set of feasible trajectories
& = {&,,¢,, &}, such that the team observes the
whole voxel-filtered surface, while also minimizing the total
distance traveled by the robots on their respective trajectories.

n len1-1

E*:arggninz > dl¢, i) (1)
i=1 j=1

such that | ) | f(rié)=8 2)
i:lqﬁegri

Given a finite set of trajectories, if S, the object model is
known, the optimal set of trajectories can be found with an
exhaustive search. As the object model is not known apriori
in an unknown environment, the optimal solution can not be
found beforehand. Thus, each robot needs to move based
on the partial observations of the team to determine the
NBV to reconstruct the object’s surface. Here we assume
that each robot can observe the object at the start of the
mission, which can be accomplished by moving the robots
till they see the object. In this work, we define this problem
in a centralized form; all the robots share their observations
with a central entity that prescribes the NBV for each by
solving the aforementioned objective.
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Fig. 3: Example observation point cloud generation and concatenation pipeline.

IV. PROPOSED APPROACH

In this paper, we present Multi-Agent Pred-NBV (MAP-
NBYV), a model prediction-guided NBV approach for a team
of robots. Figure 2 shows the overview of our process, which
consists of two parts: (1)3D Model Prediction, where we
combine the observations from all the robots to build a partial
model of the object and use PoinTr-C [10], a 3D point cloud
completion network, to predict the full shape of the objects,
and (2) Multi-Agent NBV Algorithm, which uses the partial
model and the predicted model to determine the NBV for
the team, while trying to minimize the distance traveled. Our
NBYV solution performs a greedy selection over the candidate
points to generate the trajectory, which also reduces the
computation complexity. The following subsections provide
further details of our approach.

A. 3D Model Prediction

To start, the target object is segmented out from the rest
of the environment in the captured RGB images for each
UAV. This allows the algorithm to focus on only the target
infrastructure as opposed to also including other obstacles.
Then, each of these segmented images is aligned with the
captured depth image per UAV to segment the target object
out. Point clouds are then generated per each segmented
depth image. This gives us a point cloud per each UAV
that contains points belonging only to the target object.
Assuming a centralized system, each segmented point cloud
per UAV is transformed into a central reference frame and
concatenated together into a singular point cloud. This point
cloud represents the entire multi-agent system’s observations
of the target object at the current timestamp. The point
cloud concatenation can be replaced with a registration
algorithm [33], but we use concatenation due to its ease
of use. Lastly, this current timestamp’s point cloud is then
concatenated with previous observations to get an up-to-date
observation point cloud. This process is shown in Figure 3.

In order to get an approximation of the V of the full
model V, we use PoinTr-C [10] a 3D point cloud completion
network, developed by fine-tuning PoinTr [34] using curricu-
lum learning over ShapeNet dataset [35]. Unlike PoinTr and
similar point cloud completion networks, PoinTr-C doesn’t
make implicit assumptions about the knowledge of the center
of the full model by fine-tuning over rotationally and trans-
lationally perturbed point clouds. Relaxing this assumption
makes PoinTr-C more suitable for inputs from an unknown
environment than PoinTr. The 3D point cloud of the object
obtained as the union of the observed surface points goes as
input to PoinTr-C and it predicts the full object point cloud
V.

PoinTr-C was trained over isolated point clouds and
therefore requires object point clouds to be isolated from
the scene. This can be realized with the help of distance-
based filters and state-of-the-art segmentation networks [36]
without any fine-tuning. An example of an input point cloud
and a predicted point cloud is shown in Figure 4.

B. Next-Best View Planner

We use the predicted point cloud as an approximation
of the ground truth point cloud for NBV planning. For
this, we first generate a set of candidate poses around the
partially observed object. From these, we select a set of n
poses, corresponding to each robot, based on information
gain and control effort. The information gain for the set
of n viewpoints is defined as the number of new, unique
points expected to be observed after the robots move to these
viewpoints. The control effort is defined as the total distance
covered by the robots in moving to the viewpoints.

The number of new points varies in each iteration since the
robots observe more of the surface of the object as they move
to new locations. While PoinTr-C predicts the point cloud
for the whole object, the robots can observe only the surface
points. Hence, before counting the number of new points,



(a) Input
Fig. 4: Predicted point cloud on C-17 plane after initial observation.

we apply hidden point removal [37] to the predicted point
cloud. We represent this relationship between the number
of points observed and the trajectories traversed till time ¢
by I({&), where & = {&,,,&,, ., &, }+ represents the set
of trajectories for all the robots till time ¢. To balance the
information gain and control effort, we use a hyperparameter
7 which is kept fixed throughout an episode. The robots
select the candidate to pose set which results in at least
7% of the total possible information gain over all candidate
poses. Thus, we formulate our multi-agent NBV objective as
follows.

{¢7‘1 ) ¢T2a LEER) d)'rn, }t-‘rl - arg min Z d(¢7‘m QZ)nt)
PeC o1
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In our experiments, we implement the information gain by
first isolating the predicted points that can be observed from
a given set of viewpoints and then taking a union of such
points from each agent to identify the unique points in the
joint observation. The number of the points thus obtained is
used as the information gain. For finding the control effort,
we use RRT-Connect [38] to find the path between a robot’s
current location to each candidate pose. The candidate poses
are generated similar to Pred-NBV [10], i.e. on circles at
different heights around the center of the predicted object
point cloud. One circle is at the same height as the predicted
object center with radius 1.5 X dyqe, Where dp,q, is the
maximum distance of a point from the center of the predicted
point cloud. The other two circles are located above and
below this circle 0.25 X z-range away, with a radius of 1.2 x
dmaz- The viewpoints are located at steps of 30° on each
circle. We set 7 = 0.95 for all our experiments.

such that

V. EXPERIMENTS AND EVALUATION

In order to gauge our method’s effectiveness, we com-
pare it with a non-predictive multi-agent baseline and a

T

(b) PoinTr-C Prediction

Fig. 5: Flight paths of the 2 drones during C-17 simulation.
The white line is UAV 1’s path. The green line is UAV 2’s
path.

prediction-driven NBV approach which was developed for
a single agent. While the first highlights the benefits of
including predictions in the NBV pipeline, the latter supports
the argument for using a team of robots.

A. Setup

We extend the setup in Pred-NBV [10] to work in a multi-
agent setting. Similarly, we use Robot Operating System
(ROS) Melodic and AirSim [39] on Ubuntu 18.04 for our
simulation experiments. Multiple UAVs are spawned into the
AirSim environment. We equipped each of the UAVs with
a depth camera and an RGB camera. Each UAV published
a segmented image using AirSim’s built-in segmentation.
We adapted the depth segmentation package from Pred-
NBV to work with multiple UAVs. We then converted these
segmented depth images into 3D point clouds. For our
collision-free point-to-point planner, we use the Movelt [40]
software package implementing the work done by Kose [41].

B. Qualitative Example

We evaluate MAP-NBV on the same 20 objects that were
used in Pred-NBV to allow a direct comparison. The 20
objects consist of 5 different ShapeNet classes: airplane,
rocket, tower, train, and watercraft. Examples of each class
are shown in Figure 6. These classes represent diverse shapes
and infrastructures that are regularly inspected. Figure 5



(a) Airplane
(b) Train

(c) Boat (d) Rocket (e) Tower
Fig. 6: Examples of the 5 simulation model classes.

shows the path followed by 2 UAVs as given by MAP-NBV
in the C-17 airplane simulation. This environment includes
other obstacles that are not of interest but still need to
be accounted for in collision-free path planning. MAP-NBV
finds a collision-free path for both UAVs while targeting the
maximum coverage of the C-17 airplane.

C. Comparison with Single-agent Baseline

We compared the performance of MAP-NBYV with a single-
agent prediction-based NBV planner called Pred-NBV [10].
MAP-NBYV is an extension of Pred-NBV designed for multi-
agent scenarios. However, in single-agent cases, both algo-
rithms function identically. In MAP-NBV, UAVs are spawned
close together, ensuring that the initial environment informa-
tion is virtually the same as in the single-agent Pred-NBV
case. Consequently, the initial points observed and the initial
shape completion predictions for both algorithms are highly
similar. This means that MAP-NBV and Pred-NBV select
their initial NBVs using nearly identical information.

To demonstrate the immediate information gain of MAP-
NBV over Pred-NBV, we compare the number of points
observed after navigating to the first NBVs selected by the
algorithms. Our findings, presented in Table I, reveal that,
on average, MAP-NBV observes 22.75% more points after
the first iteration compared to Pred-NBV in the context of
object reconstruction. These results are based on evaluations
across 20 objects and 5 object classes.

Furthermore, on average, each UAV in MAP-NBV flew a
similar distance to the UAV in Pred-NBV. This similarity
arises from both algorithms generating candidate viewpoints
in the same manner and employing the same point-to-point
planner.

D. Comparison with Multi-agent Baseline

We also compared the performance of MAP-NBV with
a modified baseline NBV method [11] designed for multi-
agent use. The baseline method employs frontiers to select
the next-best views. Frontiers are points located at the edge of
the observed space near unknown areas. We utilized the same
modifications described in Pred-NBV [10]. Specifically, we
used our segmented point cloud to choose frontiers near the
target object. To ensure that the UAVs always face the target

TABLE I: Points observed by MAP-NBV and Pred-NBV [10]
after first iteration of algorithm.

Points Seen  Points Seen

Class Model MAP-NBV Pred-NBV Improvement
747 11145 8570 26.12%

A340 6902 5367 25.02%

Airplane C-17 10207 7258 33.77%
C-130 5201 2559 68.09%

Fokker 100 9941 6843 36.92%

Atlas 1644 1468 11.31%

Maverick 2535 2257 11.60%

Rocket Saturn V 943 941 0.21%
Sparrow 1294 1098 16.39%

V2 1093 949 14.10%

Big Ben 2612 1980 27.53%

Church 6281 4589 31.13%

Tower Clock 2531 1971 24.88%
Pylon 2772 2600 6.40%

Silo 4188 3168 27.73%

Train Diesel 3228 3197 0.96%
a Mountain 4243 4174 1.64%
Cruise 3359 1686 66.32%

Watercraft ~ Patrol 3684 3677 0.19%
Yacht 10114 7892 24.68%

object, the orientation of all poses selected by the baseline
aligns with the center of the observed target object point
clouds.

We further adapted this baseline method to function in a
multi-agent setting. The pose for the first UAV is selected in
the exact same manner as in the single-agent baseline. For
each subsequent UAV, the remaining best pose is chosen, as
long as it does not fall within a certain distance threshold
compared to the previously selected poses in the current
iteration of the algorithm.

Both MAP-NBV and the baseline algorithm employ the
same stopping criteria. The algorithm terminates if the total
points observed in the previous step exceed 95% of the total
points observed in the current step. Our evaluation, presented
in Table II, demonstrates that MAP-NBV observes, on av-
erage, 15.63% more points than the multi-agent baseline
for object reconstruction across all 20 objects from the 5
different model classes. In our simulations, we utilized 2
UAVs for both algorithms.

Furthermore, the MAP-NBV algorithm can be readily
extended to accommodate more than just 2 robots. By incor-
porating additional UAVs, the algorithm can effectively lever-
age the collaborative efforts of a larger multi-agent system to
improve object reconstruction performance and exploration
efficiency. However, in our current evaluation, we utilized
2 UAVs for both algorithms due to limited computational
resources. The simulations were computationally intensive,
and our computer experienced significant slowdowns with
just 2 robots in the simulation. Despite this limitation, the
promising results obtained with 2 UAVs suggest that scaling
up the algorithm to include more robots has the potential to
yield even more significant improvements in performance.

Additionally, Figure 7 illustrates that MAP-NBV observes
more points per step than the multi-agent baseline while also
covering a shorter flight distance.



TABLE 1II: Points observed by MAP-NBV and the multi-
agent baseline NBV method [11] for all models in AirSim
upon algorithm termination.

Points Observed vs. Time

Points Seen Points Seen

Class Model MAP-NBY  MA Baseline Improvement
747 11628 10214 12.95%

A340 9202 8156 12.05%

Airplane C-17 12599 10150 21.53%
C-130 6311 5961 5.70%

Fokker 100 15613 13158 17.07%

Atlas 1879 1747 7.28%

Maverick 3357 2693 21.95%

Rocket Saturn V 985 877 11.60%
Sparrow 1797 1664 7.69%

V2 1255 919 30.91%

Big Ben 3741 3493 6.86%

Church 8004 6890 14.96%

Tower Clock 3139 2382 27.42%
Pylon 3075 2870 6.90%

Silo 5933 4296 32.01%

Train Diesel 3427 3233 5.83%
Mountain 4711 4215 11.11%

Cruise 4746 3118 41.40%

Watercraft ~ Patrol 3989 3683 7.98%
Yacht 11351 10341 9.31%

VI. CONCLUSION

We present a multi-agent, prediction-guided NBV plan-
ning approach for active 3D reconstruction. This method
can be helpful in a variety of applications including civil
infrastructure inspection. We show that our method is able
to faithfully reconstruct the object point clouds efficiently
compared to non-predictive multi-agent methods and single-
agent prediction-based methods. Our NBV planning ob-
jective considers both information gain and control effort,
making it more suitable for real-world deployment given the
flight time limit imposed on UAVs by their battery capacity.

In this work, we focus solely on geometric measures
for information gain. Many existing works on NBV have
developed sophisticated information theoretic measures. We
will explore combining both types of measures in our future
work. Also, we consider all possible viewpoint pairs for
finding the NBV for the team, which hinders the scalability
of MAP-NBV. We will look into methods to make this
process more computationally efficient search over a larger
candidate viewpoint set.
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